A Whale of a SETI Tale

first_imgDisney’s Fantasia 2000 had an episode that pictured whales gliding through the air as if in outer space.  Lawrence Doyle of the SETI Institute connected whales with space in another way.  His article discussed whale language as a sign of intelligence.  Appealing to information theory and entropy, Doyle discussed how scientists deduce the syntax and entropy of whale messages, even when we can’t figure out the meaning.  By entropy, he means the “number of choices in a given communication system.”  For instance, squirrel-monkey language does not have enough entropy for Shakespeare to be translated into it. An important measure of entropy is the highest “entropic-order” at which the communication systems peaks.  In measuring this, we ask how dependent the signals are on each other.  In human speech we have grammar and in human writing we have spelling (or brush strokes, etc.) that depend on each other.  If you made a copy of a written page, but the toner in the copy machine was low, you would find that you could nevertheless recover some of the missing words because there are rules of spelling and grammar superimposed on our language system.  It is these rules that allow error recovery – and this works in both vocalization as well as written communication systems (as well as any others, e.g., chemical signaling units, bee dances, visual facial features, etc.)   (Emphasis added in all quotes.)Scientists are not yet sure if whale language has the entropy level anywhere near that of humans.  But he argued that observing correlations between language and sociality of whales can help us, when we find life in space, deduce something about the social structure of the aliens:And how might this apply to the search for extraterrestrial intelligence?  If there is a relationship between social complexity and vocal complexity, then the measure of one will be a measurement, to some degree, of the other.  If a SETI signal is received, and is a normal (i.e., un-coded) communication, it will have to obey the rules of information theory in order to transmit information.  Thus, a measure of the information complexity of such SETI signals could also be a first direct measurement of the social complexity of an extraterrestrial species, irrespective of the actual decipherment of the meaning of such a message itself.  Exciting prospect indeed!Until such a signal is detected, however, it remains only a prospect for the space-intelligence prospectors.Wait a minute.  We heard Seth Shostak say last month (12/03/2005) that SETI wasn’t looking for an information-bearing message, like the proponents of intelligent design claim, but only for a persistent narrowband whistle in an unusual context that they could claim was non-natural.  What’s all this talk about information theory?  Now the SETI institute is going even beyond the inference to intelligence to an inference about social complexity.  That’s a lot of inference from a persistent narrowband whistle.  Is it not more credible to infer an intelligent cause for a language with sufficient entropy to generate tens of thousands of precision protein machines, like DNA?(Visited 17 times, 1 visits today)FacebookTwitterPinterestSave分享0last_img read more

Our All-Renewable Energy Future

first_imgIf you’ve been puzzled by the proliferation of “net,” “nearly” and “almost ready” zero-energy definitions and standards and have wondered just how net or nearly they truly are, take heart. The Passivhaus Institut (PHI) has introduced an equitable assessment of energy use to help guide us toward the 100% renewable energy future we must rapidly achieve.Inspired in part by the impressive leaps in the efficiencies of renewable energy generation, coupled with the urgency of meeting global climate change goals, PHI initiated a review of non-renewable energy use in buildings in 2013. It recognized their previous calculations for primary energy needed updating, especially as they favored the use of natural gas over electricity. (Primary energy accounts for all the source energy used by a building, including the amount of energy it takes to generate and transmit power to the building site.)PHI recognized that non-renewable forms of energy use by buildings needed to be rapidly phased out, so it devised a method to incentivize the use of renewable forms of energy in buildings. The research resulted in the overhaul of the existing Passive House “Classic” standard and the introduction of two new standards: Passive House Plus and Passive House Premium. Primary energy renewable factors and how they workAll of the new Passive House standards now calculate primary energy using Primary Energy Renewable (PER) factors. These are designed to encourage the use of renewable energy sources and create either incentives, or disincentives, for installing various types of mechanical equipment in Passive House buildings. For example, in San Francisco, using a heat pump water heater to produce hot water will result in lower primary energy requirement numbers than using a gas-fired tank water heater would, making it easier to meet the certification target. (A heat pump water heater has a PER factor of 1.25 versus the 1.75 factor for a gas-fired water heater.)PER factor calculations are based not only on fuel source, but also on site-specific load profiles calculated on an hourly basis. In this way, variations in regional utility grid source energy and typical time-of-day use profiles (which impact the availability of renewable energy to meet a utility’s load) for the local climate and region are factored into these calculations.As a result, the PER factors can vary from city to city in California (see image #4 below). For example, the electricity PER factor for heating demand via heat pumps is 1.80 in Sacramento. This relatively high PER factor incentivizes reducing heating demand in winter, when renewable energy supplies are low. In San Diego the comparable PER factor is set at 1.30, where the climate is milder and cooling is typically a greater peak load issue. Report from the Passive House Conference in MaineA Passivhaus Conference in Germany From Superinsulation to Passive House, With a Trip Across the PondRedefining PassivhausA Lesson From the Kranichstein Passive HousePassive House Video — Episode 1 Passivhaus Homes Are Extremely Tight and Energy-Efficient Bronwyn Barry is a Certified Passive House Designer and the co-president of the North American Passive House Network. This post was first published in Passive House Buildings: California’s Energy Future. Additional articles and California project examples are available in the free e-book and PDF here. Crediting renewable energy equitablyConventionally, calculations of net zero depend on the difference between a building’s annual energy demand and annual on-site renewable energy production. These calculations penalize tall buildings with small roof areas, buildings with no solar access, or buildings that opt to use their roof area for green space or as active living spaces.PHI took a major deviation from such traditional methods for crediting renewable energy supply to buildings, recognizing that all sites are not created equal in this regard (see image #2 below). PHI’s approach uses the following principles:1) Renewable offsets are calculated as a function of Projected Building Footprint (PBF) rather than total floor area. PBF is more proportional to available roof area than total floor area, which means multi-story buildings may achieve the Plus and Premium standards.2) Buildings with no solar access on site may purchase off-site renewable energy facilities to achieve Plus or Premium certification.3) PH “Classic” buildings with no on-site or off-site renewable energy supply are still optimized for efficiency first and a future grid supply of all renewable energy. Biofuels, micro-grids, and battery storageWhile biofuels are considered a renewable energy source, they carry a penalty for replacing food production. Burning biofuels also generates particulate matter that is both unhealthy and emits carbon. For these reasons, the use of biofuels is allowed, but has been capped.The most intriguing areas of innovation with regard to manifesting the 100% renewable energy future currently look to be in developing our capacity to store renewable energy (see image #5 below). We’re excited by the contributions being made right here in California to develop technologies that are contributing to our new energy future. Existing storage capacity from hydroelectric schemes is now being joined by a growing array of affordable short- and long-term battery storage options. Converting renewable energy into methane gas is another rapidly developing technology that could increase the viability of renewable energy by allowing us to store it for longer.Remarkably, these options are all currently supported by the Primary Energy Renewable calculations embedded in the Plus, Premium, and Passive House Classic standards. Indeed, the Classic standard at the heart of all of them remains the foundation that most equitably supports an all-renewable energy future. The Classic standard ensures that these buildings are optimized to become batteries themselves: They’ve been proven to retain an unprecedented level of thermal comfort while eliminating peak loads.This optimization ensures that even without the addition of active power, their passive capacity is what is literally doing the heavy lifting. These buildings enable occupants to survive in adequate comfort for very lengthy periods of time without any active energy inputs. This quality offers economic benefits to both the utilities and micro-grid designs of renewable energy storage systems that extend well beyond comfort. Just imagine what we could do with renewable energy if we didn’t need so much of it to simply operate buildings? The possibilities are boundless. RELATED ARTICLES last_img read more